首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   8篇
  国内免费   1篇
化学   131篇
晶体学   1篇
力学   5篇
数学   11篇
物理学   23篇
  2023年   1篇
  2022年   2篇
  2021年   10篇
  2020年   10篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   15篇
  2015年   8篇
  2014年   9篇
  2013年   9篇
  2012年   13篇
  2011年   16篇
  2010年   17篇
  2009年   9篇
  2008年   8篇
  2007年   11篇
  2006年   8篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1990年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
61.
The recombination rate constants for the reactions NH2(X2B1) + NH2(X2B1) + M → N2H4 + M and NH2(X2B1) + H + M → NH3 + M, where M was CH4, C2H6, CO2, CF4, or SF6, were measured in the same experiment over presseure ranges of 1-20 and 7-20 Torr, respectively, at 296 ± 2 K. The NH2 radical was produced by the 193 nm laser photolysis of NH3. Both NH2 and NH3 were monitored simultaneously following the photolysis laser pulse. High-resolution time-resolved absorption spectroscopy was used to monitor the temporal dependence of both species: NH2 on the (1)2(21) ← (1)3(31) rotational transition of the (0,7,0)A2A1 ← (0,0,0)X2B1 electronic transition near 675 nm and NH3 in the IR on either of the inversion doublets of the qQ3(3) rotational transition of the ν1 fundamental near 2999 nm. The NH2 self-recombination clearly exhibited falloff behavior for the third-body collision partners used in this work. The pressure dependences of the NH2 self-recombination rate constants were fit using Troe’s parametrization scheme, k(inf), k(0), and F(cent), with k(inf) = 7.9 × 10(-11) cm3 molecule(-1) s(-1), the theoretical value calculated by Klippenstein et al. (J. Phys. Chem. A113, 113, 10241). The individual Troe parameters were CH4, k(0)(CH4) = 9.4 × 10(-29) and F(cent)(CH4) = 0.61; C2H6, k(0)(C2H6) = 1.5 × 10(-28) and F(cent)(C2H6) = 0.80; CO2, k(0)(CO2) = 8.6 × 10(-29) and F(cent)(CO2) = 0.66; CF4, k(0)(CF4) = 1.1 × 10(-28) and F(cent)(CF4) = 0.55; and SF6, k(0)(SF6) = 1.9 × 10(-28) and F(cent)(SF6) = 0.52, where the units of k0 are cm6 molecule(-2) s(-1). The NH2 + H + M reaction rate constant was assumed to be in the three-body pressure regime, and the association rate constants were CH4, (6.0 ± 1.8) × 10(-30); C2H6, (1.1 ± 0.41) × 10(-29); CO2, (6.5 ± 1.8) × 10(-30); CF4, (8.3 ± 1.7) × 10(-30); and SF6, (1.4 ± 0.30) × 10(-29), with units cm6 molecule(-1) s,(-1) and the systematic and experimental errors are given at the 2σ confidence level.  相似文献   
62.
The new Co(II), Cu(II), Ni(II) and Zn(II) complexes of potentially N2O2 Schiff base ligand [N,N’-bis(salicyldehydene)-1,4-bis-(o-aminophenoxy)butane] (H2L) prepared from 1,4-bis-(o-aminophenoxy)butane and salicyldehyde in DMF. Microanalytical data, elemental analysis, magnetic measurements, lH NMR, 13C NMR, UV-visible and IR spectra as well as conductance measurements were used to confirm the structures. In all complexes, H2L behaves as a tetradentate. The article is published in the original.  相似文献   
63.
Energy transfer cassettes composed entirely of boradiazaindacene (Bodipy) units were designed and synthesized to capture photonic energy and convert it to longer wavelength fluorescence emission. The new energy transfer systems obtained by simple condensation reactions are capable of elaborating efficient energy transfer from donor Bodipy units to the distyryl-Bodipy acceptor.  相似文献   
64.
Four macrocyclic Schiff-base cobalt complexes, [CoL1][NO3]2 · 3H2O, [CoL2][NO3]2 · 4H2O, [CoL3][NO3]2 · 4H2O and [CoL4][NO3]2 · 2H2O, were synthesized by reaction of salicylaldehyde derivatives with 1,4-bis(3-aminopropoxy)butane or (±)-trans-1,2-diaminocyclohexane and Co(NO3)2 · 6H2O by template effect in methanol. The metals to ligand ratio of the complexes were found to be 1:1. The Co(II) complexes are proposed to be tetrahedral geometry. The macrocyclic Co(II) complexes are 1:2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3 M. The structure of Co(II) complexes is proposed from elemental analysis, Ft-IR, UV–visible spectra, magnetic susceptibility, molar conductivity measurements and mass spectra. Electrochemical and thin-layer spectroelectrochemical studies of the complexes were comparatively studied in the same experimental conditions. The electrochemical results revealed that all complexes displayed irreversible one reduction processes and their cathodic peak potential values (E pc) were observed in around of ?1.14 to 0.95 V. It was also seen that [CoL1][NO3]2 · 3H2O and [CoL2][NO3]2 · 4H2O exhibited one cathodic wave without corresponding anodic wave but, [CoL3][NO3]2 · 4H2O and [CoL4][NO3]2 · 2H2O showed one cathodic wave with corresponding anodic wave, probably due to the presence of different ligand nature even if the complexes have the same N2O2 donor set. In view of spectroelectrochemical studies [CoL3][NO3]2 · 4H2O showed distinctive spectral changes in which the intensity of the band (λ = at 316 nm, assigned to n → π* transitions) decreased and a new broad band in a low intensity about 391 nm appeared as a result of the reduction process based on the cobalt center in the complex.  相似文献   
65.
Two new phosphinite ligands based on ionic liquids [(Ph2PO)C7H14N2Cl]Cl ( 1 ) and [(Cy2PO)C7H14N2Cl]Cl ( 2 ) were synthesized by reaction of 1‐(3‐chloro‐2‐hydoxypropyl)‐3‐methylimidazolium chloride, [C7H15N2OCl]Cl, with one equivalent of chlorodiphenylphosphine or chlorodicyclohexylphosphine, respectively, in anhydrous CH2Cl2 and under argon atmosphere. The reactions of 1 and 2 with MCl2(cod) (M = Pd, Pt; cod = 1,5‐cyclooctadiene) yield complexes cis‐[M([(Ph2PO)C7H14N2Cl]Cl)2Cl2] and cis‐[M(Cy2PO)C7H14N2Cl]Cl)2Cl2], respectively. All complexes were isolated as analytically pure substances and characterized using multi‐nuclear NMR and infrared spectroscopies and elemental analysis. The catalytic activity of palladium complexes based on ionic liquid phosphinite ligands 1 and 2 was investigated in Suzuki cross‐coupling. They show outstanding catalytic activity in coupling of a series of aryl bromides or aryl iodides with phenylboronic acid under the optimized reaction conditions in water. The complexes provide turnover frequencies of 57 600 and 232 800 h?1 in Suzuki coupling reactions of phenylboronic acid with p‐bromoacetophenone or p‐iodoacetophenone, respectively, which are the highest values ever reported among similar complexes for Suzuki coupling reactions in water as sole solvent in homogeneous catalysis. Furthermore, the palladium complexes were also found to be highly active catalysts in the Heck reaction affording trans‐stilbenes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
66.
67.
In basic solutions, the oxidised porphyrin 2 readily undergoes macrocyclic N-alkylation, with up to four bulky alkyl groups, including decyl and substituted benzyl moieties, being accomodated: an argument is presented to show that N-di-alkylation occurs on opposite nitrogen atoms, on the same side of the macrocycle.  相似文献   
68.
A chiral Schiff base ligand (H2L) was obtained by condensing 2-hydroxynaphthalene-1-carbaldehyde with substituted (1R,2R)-(–)-diaminocyclohexane. Chiral Schiff base complexes [CuL], [NiL], [ZnL] and [MnLOH] have been synthesized and characterized by elemental analyses, M, i.r., u.v.–vis. and 1H-n.m.r. and magnetic measurements.  相似文献   
69.
The identification of talented students accurately at an early age and the adaptation of the education provided to the students depending on their abilities are of great importance for the future of the countries. In this regard, this study aims to develop a mathematical ability test for the identification of the mathematical abilities of students and the determination of the relationships between the structure of abilities and these structures. Furthermore, this study adopts test development processes. A structure consisting of the factors of quantitative ability, causal ability, inductive/deductive reasoning ability, qualitative ability and spatial ability has been obtained following this study. The fit indices of the finalized version of the mathematical ability test of 24 items indicate the suitability of the test.  相似文献   
70.
Transferrin (Tf) is a promising candidate for targeted drug delivery. While development of such products is impossible without the ability to monitor biodistribution of Tf-drug conjugates in tissues and reliable measurements of their levels in blood and other biological fluids, the presence of very abundant endogenous Tf presents a significant impediment to such efforts. Several noncognate metals have been evaluated in this work as possible tracers of exogenous transferrin in complex biological matrices using inductively coupled plasma mass spectrometry (ICP MS) as a detection tool. Placing Ni(II) on a His-tag of recombinant Tf resulted in formation of a marginally stable protein–metal complex, which readily transfers the metal to ubiquitous physiological scavengers, such as serum albumin. An alternative strategy targeted iron-binding pockets of Tf, where cognate Fe(III) was replaced by metal ions known to bind this protein. Both Ga(III) and In(III) were evaluated, with the latter being vastly superior as a tracer (stronger binding to Tf unaffected by the presence of metal scavengers and the retained ability to associate with Tf receptor). Spiking serum with indium-loaded Tf followed by ICP MS detection demonstrated that protein quantities as low as 0.04 nM can be readily detected in animal blood. Combining laser ablation with ICP MS detection allows distribution of exogenous Tf to be mapped within animal tissue cross-sections with spatial resolution exceeding 100 μm. The method can be readily extended to a range of other therapeutics where metalloproteins are used as either carriers or payloads.
Graphical Abstract ?
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号